Complete integrable particle methods and the recurrence of initial states for a nonlinear shallow-water wave equation
نویسندگان
چکیده
We propose an algorithm for an asymptotic model of shallow-water wave dynamics in a periodic domain. The algorithm is based on the Hamiltonian structure of the equation and corresponds to a completely integrable particle lattice. In particular, “periodic particles” are introduced in the algorithm for waves travelling through the domain. Each periodic particle in this method travels along a characteristic curve of the shallow-water wave model, determined by solving a system of nonlinear integro-differential equations. We introduce a fast summation algorithm to reduce the computational cost from O(N) to O(N), where N is the number of particles. With the aim of providing a test of the algorithms, we scale the shallow-water wave equation to make it asymptotically equivalent to the KdV equation in the form studied by Zabusky and Kruskal in their seminal 1965 paper, thereby also testing the equivalence of the two models derived under similar asymptotic approximations of shallow water wave dynamics. By using the fast summation algorithm and the asymptotic scaling analysis, we further test this equivalence by investigating the interaction of solitons and recurrence of initial states for the shallow-water wave equation in periodic domains. Finally, to illustrate the hyperbolic nature of the dynamics of the shallow-water wave model, we introduce a particle algorithm and its integral counterpart for the initial-boundary value problem with homogeneous boundary conditions on finite intervals.
منابع مشابه
A completely integrable particle method for a nonlinear shallow-water wave equation in periodic domains
We propose an algorithm for an asymptotic model of shallow-water wave dynamics in a periodic domain. The algorithm is based on the Hamiltonian structure of the equation and corresponds to a completely integrable particle lattice. In particular, “periodic particles” are introduced in the algorithm for waves travelling through the domain. Each periodic particle in this method travels along a char...
متن کاملTopological soliton solutions of the some nonlinear partial differential equations
In this paper, we obtained the 1-soliton solutions of the symmetric regularized long wave (SRLW) equation and the (3+1)-dimensional shallow water wave equations. Solitary wave ansatz method is used to carry out the integration of the equations and obtain topological soliton solutions The physical parameters in the soliton solutions are obtained as functions of the dependent coefficients. Note t...
متن کاملA dispersion-relation-preserving algorithm for a nonlinear shallow-water wave equation
The paper presents an iterative algorithm for studying a nonlinear shallow-water wave equation. The equation is written as an evolution equation, involving only first-order spatial derivatives, coupled with the Helmholtz equation. We propose a two-step iterative method that first solves the evolution equation by the implicit midpoint rule and then solves the Helmholtz equation using a three-poi...
متن کاملNew explicit and Soliton Wave Solutions of Some Nonlinear Partial Differential Equations with Infinite Series Method
To start with, having employed transformation wave, some nonlinear partial differential equations have been converted into an ODE. Then, using the infinite series method for equations with similar linear part, the researchers have earned the exact soliton solutions of the selected equations. It is required to state that the infinite series method is a well-organized method for obtaining exact s...
متن کاملOn asymptotically equivalent shallow water wave equations
The integrable 3rd-order Korteweg-de Vries (KdV) equation emerges uniquely at linear order in the asymptotic expansion for unidirectional shallow water waves. However, at quadratic order, this asymptotic expansion produces an entire family of shallow water wave equations that are asymptotically equivalent to each other, under a group of nonlinear, nonlocal, normal-form transformations introduce...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- J. Comput. Physics
دوره 227 شماره
صفحات -
تاریخ انتشار 2008